
LOAN DOCUMENT

a

PHOTOGRAPH TUB SHEET

LEVEL INVENTORY

Kit?-77-UM d
DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
DISTRIBUTIONSTATEMENT

iirnimini
tau
DIK nuc
UNANNOUNCE»
JUSTIFICATION

t

»y

DISTRIBUTION/

AVAILABILITY CODE!

DISTRIBUTOR AVAILABIUIY AND/0* SHOAL

fiA

DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETURNED

H
A
N
D
L
E

W
I
T
H

C
A
R
E

DATE RECEIVED IN OTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

HWoll MffloUl UAV MUMD UWIL
(TOaCDEXHAUXnD. DTK; ,70A DOCUMENT PROCESSING «HEET

LOAN DOCUMENT

RIA-77-U990

TECHNICAL
LI]

N73-11189

DEBUGGING COMPUTER PROGRAMS: A SURVEY
WITH SPECIAL EMPHASIS ON ALGOL

R. S. Scowen

National Physical Laboratory
Teddington, Middlesex, England

June 1972

DISTRIBUTED BY:

Reproduced From

Best Available Copy National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

V

mm
:W»0 K*?5 1

y^. «*§*■ $ „,rf\ V „<*? Jig?* *-.,,.Ö'

.«ä tiüsh wi.;: *i -^lllm*/

WTWwwrm
'-■ ¥>' it.

'■£ v A ^:': &

äMl

**&'■

H3/no "«das
_H2/0e 91360

äS*
. &i

F.;« ##k
;yi|;f

•;.#
;'

Äw'^.f-

3&
Ki ,■>.

',#'

S5

a. &

!#' ^'

:ü'Tr

j#-

fr*?-

■, -i."(i-

Je

»■"*'

'.*

'■;S#

-;M
Reproduced by

NATIONAL TECHNICAL
IMEQEMATION SERVICE

.'iisäS

N O T IGE

«*.M «PRODUCED FROM THE
THIS DOCUMENT HAS BEEN REPRODUC
THIS» uwv. SPONSORING
BEST coPY FURNISHED US BY THE SPONS

TA,N PORTIONS ARE ILL.«»«. « I. "»« "

AS MUCH INFORMATION AS POSSIBLE.

DEBUGGING COMPUTER PROGRAMS
A SURVEY WITH SPECIAL EMPHASIS ON ALGOL

R. S. Scowen
National Physical Laboratory
Teddington» Middlesex» England

Abstract

This report considers the problems of debugging computer programs and some
of the tools which can simplify the task, the main sections describe:- (1)
ya/3 in which compilers can aid the debugging of programs» (2) ALGOL prog-ams
which can be used to determine the kinds of errors detected by an ALGOL
compiler» (3) results of running the test programs on sixteen different
compilers» (4) results obtained from a survey of the errors made by
programmers at N.P.L.

CONTENTS

INTRODUCTION 1

USEFUL PRINCIPLES 2

Detecting errors 2
Error messages 2
Efficiency 3
Extra debugging options 4
The operating system 5
Debugging and programming language design 5
Debugging and compiler design 6

THE ALGOL TEST PROGRAMS 7

1. Programs which should fail, to translate 7
2. Programs which should fail during execution 11
3. Programs which are legal but might contain an error 14
4. Programs to test the rigour of the compiler 17

THE ALGOL COMPILER TESTS 19

The compilers» machines and testers 19
The results 20

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS 26

Runtime errors 26
Translation errors 30

CONCLUSION ^f 33

ACKNOWLEDGEMENTS 34

REFERENC II 35

DEBUGGING DATE 19/06/72 PAGE 1

INTRODUCTION

Debuaaina is the process of locating and correcting the errors in a computer
prog?am;9the eff ciency with which it can be carried out depends critically on
?he compi lers and software available. This report describes:- (.1) some
prop ?tie which compilers should possess to simplify debugging;; (2) a number
of small ALGOL 60 test programs designed to discover how helpfu ly an ALGOL
cornier treats incorrect programs; (3) a summary o the results which were
obtained when the test programs were run on sixteen different compilers (4)
the results of a survey of failures in ALGOL 60 programs recorded by suitably

modified compilers used at NPL.

Debugging would be unnecessary if programs could be proved to be correct
Much work is going on in this field (see London 1970. and Adams et a I. 1972)
but the techniques are not yet widely applied, and debugging is likely to be
necessary for some time to come. The topic is not considered further n the
Resent report* neither are the special problems of debugging real-time
systems; see a paper by van Horn (1968) for some pertinent suggestions.

Debugging tools can be classified as active or passive. An active tool is
one whfcn enables the programmer to specify what ■ h..wants after he as
realized there is an error; examples are g ven be ow in the Paragraph Extra
debugging facilities* on page 4. A passive tool works automatically without
any effort from the programmer, e.g. failure messages, store post-jortens.
etc This report is mainly concerned with passive tools since these are
generally more useful. The basic handicap of active debugging aids is that
they rely on foreknowledge of where the errors will occur.

DEBUGGING DATE 19/06/72 PAGE 2

USEFUL PRINCIPLES

Detecting errors

A compiler should not translate and run illegal programs. It not only makes
debugging harder but also adds to the difficulty of ensuring that a program is
machine independent.

Errors should be found during translation rather than at runtime"; less
computer time is then wasted and the failure message is more likely to be
helpful because the position of the error can be specified more precisely.
Errors which are not found by the compiler are particularly wasteful of the
programmer's time; the only evidence is often the whole program and a mass of
more or less incorrect results. With programs that lose control (e.g. by
overwriting the program or compiler) the only evidence is an octal or
hexadecimal core-dump (see Anon 1969).

Of course» not all programming errors can be found by a compiler. For
example» if the programmer writes the constant '997' instead of '977'» or uses
faulty logic (e.g. see Forsythe 1970). then the program is legal but
performing the wrong task. Occasionally the compiler can help detect these
errors by printing warning messages'when it finds odd features in the program.

Error messages

Failure messages should be intelligible; if the programmer cannot
understand them, then effectively all he is told is 'invalid program'. Ideally
all messages should be in a language understood by the programmer. It is a
poor compiler if the programmer needs to know the assembly or machine language
in order to be able to debug his programs. Error messages should also be
reliable and not tell the programmer that he has made one sort of error when»
in fact» the mistake is something quite different.

When the compiler finds a syntax error» it should report the position and
cause of the error precisely and clearly. Note that the position of the error
may not be where it is discovered. For example» although the KDF9 Whetstone
ALGOL compiler does not detect 'variable used but not declared' until the end
of the translation» it nevertheless tells the programmer where the variable
was used.

One concise way of specifying the position is to give a line number» but
this will be insufficient unless the programmer can easily identify the line
concerned. There are other methods of specifying the position of an error
clearly» e.g. the compiler can print the symbols which occur just before and
after the error« or give the number of lines since the start of the latest
procedure declaration or label. The clearest way is to print a listing of the
program with the error messages interspersed in the appropriate places.
However this can be expensive» it is also often impractical in an online
situation.

When ar| error is discovered during execution the minimum amount of

DEBUGGING DATE 19/06/72 PAGE 3

information which should be given is:-

(1) The cause of the error.
(2) The position in the program text where the error was
detected. The position in the object code is less useful.

Not all compilers help even this much. In any case extra information is

nearly always useful« e.g.

(3) The route of the program just before it failed (a
'retroactive trace', in KDF9 terminology). ^ , .
(4) The value of some or all the variables at the time the

program failed.

This information can be printed only if runtime errors are discovered

before the whole store has been corrupted.

Efficiency

Some compilers contain optional facilities which test the program more
thoroughly f these aids are slow and expensive, the programmer may e ab
to afford to use them. The KDF9 ALGOL system is faulty in this respect. It

ns of two compatible compilers: one (Whetstone) is designed for program
2" anS her (Kidsgrove) for! executing correct programs.

5n o ;9unatel "theWhetstone compi ler executes programs so slow y t at some
nroorams have to be debugged using the Kidsgrove compiler. Also the system
Sm be inefficient unless as many errors as possible are found during each
trans Iat on. It is impossible to find every syntax error in every program but
a good compiler should find most of the errors *ost of the time Note at
successful recovery from an error is more difficult in ^"J^ "™ J ™}£
recursive structure like ALGOL than in one-sta^ement-at-a-time languages like

FORTRAN or BASIC. j

Whether a program should be executed further after a runtime error is
debatable AdS???onal errors might be discovered, but the program is going to
run for a'longer time and cost more; the results are bound to be wrong and it
Z be more di?ficuU to trace the first error because some evidence wi 11 have
Seen destroyed. Perhaps the compiler should continue after some runtime errors
(eg when a value does not fit a specified output format). but not after

others.

A useful option for load-and-go compilers (*1) would allow a program to be
....*^ »«r- th«n nnre with different sets of data even if it fai Is at executed more than once with different

runtime.

"(1) A load-and-go compiler compiles a program and immediately executes

it

USEFUL PRINCIPLES

DEBUGGING DATE 19/06/72 PAGE 4

Extra debugging options

Debugging can often be simplified if extra facilities are available to the
programmer.

1. Tracing

Tracing is the process of printing a record of the steps executed by a
program while it is running. Tracing is rarely needed if other debugging
facilities are good, but occasionally it is extremely valuable; various levels
are useful« e.g:-

(1) Every procedure call or label

(2) Every jump

(3) Every assignment statement

(4) Every operation

It is also helpful if the values of some or all of
printed when tracing is switched on.

the variables can be

Tracing is not so useful if it can be switched on and off only during the
translation and thus must be performed every time the specified parts of the
program are executed. Difficulties will arise when an error occurs on the last
time round a loop. Printing the trace each time round the loop would be very
slow and expensive and so it is essential to be able to trace only the last
few relevant circuits.

A variant of tracing is the option of printing the value
variable every time there is an assignment to it.

of a particular

2. Documentation aids

Documentation programs [e.g.
1970) and flowcharters] list a
structure and action. Flowchart
parts of the program with the
shows footpaths and motorways i
documenting ALGOL programs;
exposes the extent of any
alternatives in a conditional
flowcharters.

SOAP (Scowen et al, 1971), NEATER/2 (Conrow
program in a consistent way which clarifies its
ers have the disadvantage that they present all
same degree of emphasis» rather like a map that
n the same way. SOAP is generally superior for
by indenting some lines more than others it
statement» declaration or comment» and the
statement. SOAP is also faster and cheaper than

3. A flow-trace

A flow-trace is a listing or table which specifies how many times each part
of a program has been executed. It too is a useful tool for gaining insight
into what a program does.

A related facility gives the amount of time spent in each part of the
program.

DEBUGGING DATE 19/06/72 PAGE

4. A concordance

When a procrammer has to modify a large program, he will often find he is
unable to understand the use of a particular variable; in these circumstance«?
he needs a concordance of the program, i.e. a listing of the declaration, uses
and assignments of every variable in the program.

5. A general macro processor

A general macro languaqe and processor (e.g. ML/I. see Brown 1966,1967) is
useful when altering large progams from one language or dialect to another. A
general macro-processor wi11 make many of the alterations consistently and
avoid introducing random trivial mistakes.

The operating system

The characteristics of a compiler should depend on the sort of operating
system in which it is embedded. For a multi-access operating system with
remote job entry facilities, the compiler should be small and fast. Only a
limited amount of output is desirable if the printing speed of the terminal is
slow certainly there is no time for a program listing or reference tables.
Output on a display or line-printer should still be brief; too much is merely
confusing. Some systems continue to print information which was needed by the
implementors when the system was being developed. Also it is less important to
discover all the syntax errors during one translation because little will be
lost if an extra compilation is necessary.

On the other hand, for a batch operating system with a turn-round measured
in hours, the proqrammer will feel frustrated if the compiler discovers only
one error in each run. It may be appropriate to execute a program up to the
first syntax error even if it fails to translate (as in 1900 ALGOL).

a

Debugging and programming language design

Two of the most important objectives in designing new programming languages
should be to make it easier to write programs and less easy to make mistakes.
These objectives are often not given their due importance but they can be
achieved. A concise natural notation using simple consistent rules helps the
programmer avoid errors; and redundancy in the language ensures that as many
errors as possible are found during translation. Default rules are dangerous
because they can be applied unwittingly; it is safest and simplest if
programmers follow the advice given to Alice: the/ say what they mean ES well

as mean what they say.

The modern versions of ALGOL are superior to ALGOL 60 which Itself has
advantages over FORTRAN. Some common programming errors, which would be nore
easiU' cured o- avoided if FORTRAN had been defined differently, are described
by Plspss et al (1971) and by Evershed et si (1971). DITRAN (see Moulton et al
1967) is an implementation of FORTRAN which does a full check-on the legality
of a program. The authors wanted to use the compiler for teaching students and

DEBUGGING DATE 19/06/72 PAGE 6

they were ir.ore interested in fast translation and good diagnostics than in
runtime speed. The paper describes the contortions which are essential if a
complete check is to be performed on a FORTRAN program but it does not state
what effect the checks have on runtime efficiency.

Debugging and compiler design

The best and most efficient compilers for debugging purposes are probably
those which are load-and-go and produce machine code (e.g. ALGOL W, Babe I,
WATFOR). Load-and-go compilers are convenient to use because there is only a
single job to be submitted to the operating system. Compilers are faster when
they produce machine code because they avoid the overheads of assemblers and
linkage editors.

It is a common belief that an interpretive system is necessary for good
runtime diagnostics, but this is not true. It is not difficult to produce and
store tables during compilation which can be used after a runtime failure to
interpret and output sensibly the contents of the store. Other debugging
facilities can be provided by compiling programs in slightly different Ways.

DEBUGGING DATE 19/06/72 PAGE 7

THE ALGOL TEST PROGRAMS

1. Programs which should fail to translate

1.1 Illegal syntax

begin

end
real ;

1.2 Variable used but not declared

beg i n

end
x := 2.3

1.3 Variable declared twice

begin

end

real x;
integer x;

1.4 Invalid operator

beg i n

end

real x» y;
x := y > x

1.5 Wrong number of subscripts

beg i n

end

real x;
array ad : 101?
x :=.aC1• 33

TH^LGO^ESTPROGRAMS

DEBUGGING DATE 19/06/72 PAGE 8

1.6 Actual parameter of wrong type

begin
procedure p(x);

real x;

boolean z;

end

1.7 Illegal use of constant as parameter

beg i n
procedure p(x);

real x;
x := 3.14;

p(2.71)
end

1.8 Wrong number of parameters

begin
procedure p(x);

real x;

p(2, 4)
end

1.9 Wrong number of subscripts in a formal array

begin
procedure p(a);

array a;
ad] := 0;

array aCO : 3» 0 : 33;
pTaT

end

DEBUGGING DATE 19/06/72 PAGE 9

1.10 An inconsistent actual procedure parameter

Procedure 'p' has a formal parameter 'q" which is specified as a procedure.
It is possible to deduce from the use of *q' inside 'p' that 'q' has one
parameter of type real . When 'p' is calledi it has an actual parameter 'r*
which is a procedure with one boolean parameter. Thus the use of 'p' is
inconsistent with its declaration and the program contains an error.

begin
procedure r(b);

fc°0lean b;

procedure p(q);
procedure q;
qCxTf

real x;
pTFT

end

1.11 Declaration follows statement

begin
procedure p(x);

real x;

real y;
end

1.12 A goto statement into a for statement

begin
integer i;
goto m;
Tor i := 2 do

begin
m:

end
end

1.13 Variables of different types in a left-part list

begin
real x;
integer i;
x := i := 2

end

THE ALGOL TEST PROGRAMS

DEBUGGING DATE 19/06/72 PAGE 10

1.14 Invalid use of integer divide

begin
integer i;
i := 7;
i := abs(i) di_v 2

end

1.15 A missing closing string quote

It is desirable that the programmer should be told not only that there is
an unmatched string-quote-synbol at the end of his progräm, but also where the
string starts.

begin
procedure p (s);

string s;

P (

end

0123456789abcdefghi j kImnopqrstuvwxyz
01234567S9abcdefghijklmnopqrstuvwxyz
0123456789abcdefghi j kImnopqrstuvwxyz
0123456789abcdefghijklmnopqrstuvwxyz
0123456789abcdefghijklmnopqrstuvwxyz
0123456789abcdefghi j kImnopqrstuvwxyz
0123456789abcdefghijklmnopqrstuvwxyz
0123456789abcdefghijklmnopqrstuvwxyz
0123456789abcdefghi j kImnopqrstuvwxyz
0123456739abcdefghi j kImnopqrstuvwxyz
);

DEBUGGING DATE 19/06/72 PAGE 11

2. Programs which should fail during execution

?..1 Subscript outside the array bounds - <i>

begin

end

real array al 1 : 10];

2.2 Subscript outside array bounds - (ii)

begin

end

array aC1 : 10, 1 : 31;
äT2T"4] := 0

2.3 Subscript outside array bounds - (iii)

begin

end

array ad : 3, 1
TUTT21 := 0

103;

2.4 Division by zero

begin

end

real x;
x"T^ 3.7 / 0.0

2.5 Square root of a negative number

begin

end

real x;
x" := sc,rt(- 1.0)

THE ALGOL TEST PROGRAMS

DEBUGGING DATE 19/06/72 PAGE 12

2.6 Logarithm of zero

begin
real x;
x := In(O.C)

end

2.7 Overflow on exponentiation

beg i n
real x;
x := exp(2000.0)

end

2.8 Use of a variable with no previous assignment

begin
real x» y, z;
x := y;
x := z * z

end

2.9 The lower bound of an array exceeds the upper bound

begin
array a[10 : 0];
aT2T~:= 3

end

2.10 Zero exponentiate zero

begin
integer i;
i := 0;
i := i t i

end

2.11 -1.0 t 2.0 is undefined

begin
real x;
x := - 1.0;
x := x t 2.C

end

i

DEBUGGING

2.12 Overflow during exponentiation

begin
real x;
7~^ 10 000;
x := x t 1 000

end

DATE 19/06/72 PAGE 13

2.13 An infinite loop

This program is designed to test what happens to a^proga« «hich translates.
but when executed goes into an infinite loop. It is unde irab e for ths

BKK. ^ shLiinrhU°^^ioi:;i^ Sä^IS «*:
one program.

A retroactive trace often helps when trying to find the cause of an
infinite toop because it can indicate the whole of the loop, and not just the
single point in it.where the program failed.

begin
 Tib:

goto lab
end

THE i,fin. TFST PROGRAMS

DEBUGGING DATE 19/06/72 PAGE U

3. Programs which are Legal but might contain an error ,

All these programs are valid ALGOL 60; each one should compile and run
without failing. However, they all contain an odd feature which might be there
only because the programmer has made an error. If the compiler produces a
warning message about this odd feature, it nay help the programmer to trace an
otherwise troublesome mistake.

3.1 End comments

The programmer may have forgotten a semicolon after the first end . A
helpful conpiler will detect the error if it gives a warning oT"odd end
comments.

beg i n

end

integer x;
if true then

begin
x := 1
end

x := expTxT

3.2 Begin - end structure is invalid

The extra end in this program may indicate that an error has occurred
earlier. " A compiler will detect this error if it insists on a unique
end-of-program symbol at the end of all ALGOL programs. It will also detect
the error if it warns the programmer of extra text after the end of his
program.

begin
real x;

end
end

DEBUGGING DATE 19/06/72 PAGE 15

3.3 Assignment to a vsLue parameter

The programmer may have been under a misapprehension when he made the
assignment to the value parameter. The compiler should warn him that if he
wants the result, the parameter must be called by name. If the compiler makes
the assignment to the actual parameter (an error), then this program will fail
subscript overflow.

begin
procedure p(n);

value n; integer n;
n := 100 000 * n;

end

array aCO : 13;
integer n;
n := 1;
p(n);
aCnl := 0

3.4 Real-to-integer operations are invisible

This program contains a real-to-integer operation. The compiler should warn
the programmer:- (1) that he will lose accuracy; and (2) that to save tirie he
should move the operation outside any inner loops.

begin

end

integer i;
i := 3.14

3.5 A null for loop

This program contains a for loop which is not executed; this is worthy of
comment by the compiler (perhaps V has an invalid value). The program is
written so that if the loop is executed once (a la FORTRAN) the program
fail division overflow.

will

begin

end

integer i» j» n;
n ':= -3;
for i := 0 step 1 untiI n do

j := 2 div i

THE ALGOL TEST PROGRAMS

DEBUGGING DATE 19/06/72 PAGE 16

3.6 Identifier declared but not used

A program which contains an identifier which is declared but not used is
probably longer than necessary. It may contain an error because the use of the
identifier is misspelt.

begin
real x» y;
x := 1

end

3.7 Switch index overflow

This program does not contain an error according to the Revised Report.
However in ECMA Subset ALGOL 60 (see ECMA, 1963) and IFIP Subset ALGOL 60 (see
IFir>, 1964) # a goto statement involving an undefined switch designator is
undefinedi i.e. an error. The program is sufficiently odd to warrant an error
message from compilers dealing with strict ALGOL 60. and all other compilers
should report a failure.

begin

L1: L2:
end

switch s := Li. L2, L1;
goto sC43;

3.8 Real relations

Comparing two real values may well give different results with different
compilers. It may help the programmer if he is warned whenever he does this.

begin
real x» y;
x := y := 2.0;
vf x = y then

end

DEBUGGING
t

DATE 19/06/72 PAGE 17

4. Programs to test the rigour of the compi Ler

4.1 Use of local identifier in array subscript bound

begin
integer i;
i := 3;
begin

array all : i];
aC1] := 0;

i.
end;
TT= 2

end

4.2 If» then, for, else ambiguity

This program is legal according to the ALGOL 60 Report, but not according

to the Revised Report.

begin
integer i, j;
if true then

for i := 2 do
 j :~1

else
 " j := 1

end

4.3 Redeclaration of standard entity

This program is legal.

begin .
real sin;

end

4.4 A check that comments are correctly recognized

begin
comment an odd comment;
pgaIy«

"cIöimenL further than end, up to the semicolon in fact. £eaj, x;
x := 1.0

end

THE ALGOL TEST PROGRAMS

DEBUGGING DATE 19/06/72 PAGE 18

4.5 Own arrays

This program checks both that own array is not a valid abbreviation for own
real array , and whether dynamic own arrays are allowed.

begin
integer i;
i := 10;
begin

own array all : i];
end

end

4.6 Non printing characters are not significant

This program checks that space-symbols are not regarded as significant in
the middle of identifiers or numbers. ■ * • .

begin

end

boolean acheckonlongidentffiers;
real pi;
a check on long identifiers := true;
pi := 3.14159 26535 89793 23846~26T33 83280;

THE ALGOL COMPILER TESTS

The compilers, machines and testers

The programs listed in the previous section have been executed on sixteen
compilers in order to see how they tr*eat incorrect programs. Some of the
compilers tested were standard versions available as part of the
manufacturer's software» others were produced in universities» etc. They are
listed below together with the dates of the tests and the names of the people
who performed them. Some compilers have since been improved» e.g. UNIVAC 1108.

ICL KDF9, Whetstone ALGOL Compiler, Miss R. Thorn» NPL, June 1970 (see
Rande 11 and Russell, 1964).

ICL 4120. The manufacturer's compiler. Miss R. Thorn, NPL, June 1970.

GE625« Honeywell Computer Time Sharing Service« Miss. R. Thorn« NPL, June
1970.

ALGOL U, Stanford University compiler on an IBM 360/67, E. Satterthwaite,
Stanford University, Nov 1970 (see Wirth et al 1966, Bauer et al 1968 and
1971, Satterthwaite 1971).

ICL 1900, XABE (except programs 2.8, 3.1 which were run using XALT/3), R.
L. Dees, ICL, June 1970.

UNIVAC 1108, The manufacturer's compiler, G, H. L. Buxton, NEL, June 1970.

IBM 360/65, The manufacturer's compiler, P. A. Samet, Joan Garrett, M.
Thomas» University College» June 1970.

ICL ATLAS, The ALGOL compiler (6 Feb 1970). F. R. A. Hopgood, Atlas
Computer Lab, July 1970.

XDS 9300, The manufacturer's compiler, I. D. Hill, Medical Research Council
Computer Unit, July 1970.

IBM 7094/1, Ali;or -• Illinois 7090 compiler, E. Hansen, Atomic Energy
Commission, Denmark, July 1970 (see Bayer et al 1967).

GIER4, GIER ALGOL III and ALGOL IV, E. Hansen» Atomic Energy Commission,
Denmark, July 1970.

BABEL, The KDF9 Eldon Babel compiler, M. J. Parsons, NPL, Oct 1971 (see
Scowen 1969).

EGDON, The KDF9 EGDON ALGOL compiler, B. Cooper and M. D. Poole, Culhan
Laboratory, July 1970.

ICL System 4/50, The manufacturer's compiler, C. Harris and M. D. Poole,
Culham Laboratory, July 1971.

THE ALGOL COMPILER TESTS

DEBUGGING DATE 19/06/72 PAGE 20

MayA1971 ^ ^ C°mpUer °n KL 1907F' *• Currie. Royal Radar establishment,

Electrologica X8 THE, THE ALGOL, C. Bron, Technoloaical University,
Eindhoven, October 1971. " Iy'

The results

The results are summarized in four tables using the symbols:-
T A translation error was detected
R A runtime error was detected
W A warning message was printed
0 No error was detected ,
X The program was not tested with this compiler

This legal program compiled and ran successfully
There is no equivalent program in this version of ALGOL

OK
NA

No quantTtative value for the debugging effectiveness of each compiler is
given because these tests do not measure all the relevant factors. In any case
the compilers were written for computers differing in age, size, cost,
characteristics and operating systems.

I would be happy writing programs for any of the 7094, ALGOL 68R. ALGOL w
or Babel compilers (the order is random). All these systems give clear error
messages, check for all or most «faults, and give a clear runtime post-mortem.
AU except 7094 give extra language features which simplify the expression of
many programs ALGOL W and Babel give a flowtrace and other tracing
facilities. Babel and ALGOL 68R can be used from a terminal for online remote
job entry and execution.

UtUUbblNU uftic iy/uo/ri KHUC CI

1. Translation errors

COMPILER 1
KDF9
4100
GE625
ALGOL W
1900
1108
360/65
ATLAS
9300
7094
GIER4
BABEL
EGDOM
4/50
ALG0L68R T
X8 THE T

2
T
T
R
T
T
T
T
T
T
T
T
T
T
T
T
T

3
T
T
T
T
T
T
T
T
T.
T.
T

T
T
T
T

5
T
T
T
T
T
R
T
T
R
T
T
T
T

RC7) T
T T
T R

4
R
T
T
T
T
T
T
I

T
T
T
T
T

6
R
T
R
T
T
R
R
T

7
R
T
R

(2)
R
R
R
R

(4) (4)
T T

T(5) 0
T T
T
T
T
R

0
0
NA
R

8
T
T
R
T
T
R
T
T
R
T
T
T
T
T
T
R

10
R
T
R
R
0
(3)
R
T
(4)
0

R(5) 0
T (6)
0 T
0 T
NA T
R R

9
R
T
R
T
0
R
R
0
R
T

11 12
T T

13 14
T T

15 COMPILER

T
0
T
T
0
T
T
T
T
T
T
T
T
OK
T

T
R
T
O
0
T
R
(4)
T
O
T
T
T
T
T

T
0
T
X
(3)
T
T
0
T
T
T
T
T

T
0
(2)
X
0
T
0
T
0
T
(6)
T
T

OK NA
T O

KDF9
4100

GE625
ALGOL W

1900
1108

360/65
ATLAS
9300
7094
GIER4
BABEL
EGDON
4/50

T ALG0L68R
T X8 THE

T
(1)
(1)
T
X
0
T
T
T
T
(1)
T
T

T(7)

(1) 4100. GE625, GIER4.
The Translator asks for more.

(2) ALGOL W. . , • ,.
The error in program 1.7 is found during translation if the
formal parameter is specified to be REAL RESULT; otherwise the
error is found during execution. Program 1.14 is a legal
program in ALGOL W because 'abs* is an operator, but real
operands for integer-divide fail during translation.

(3) 1108. . .
Program 1.10 fails at runtime because the declaration of x
must precede its use. Program 1.13 is legal in this version of

ALGOL.

3.14 is assigned to the constant 2.71 in program 1.7. In
program 1.6, true = 1 and false = 0. Program 1.10 probably
fails to transläte~because V^rUsed before its declaration.
Program 1.12 goes into a closed loop during execution.

The errors in programs 1.6 and 1.9 are not detected in the

GIER 3 compiler.

There is no Babel program equivalent to 1.10. Program 1.14 is
legal in Babel because 'abs' is an operator.

Program 1.4 fails at runtime but gives no error ^message. The
failure message for program 1.15 is a random alpha-numeric

string.

THE ALGOL COMPILER TESTS

DEBUGGING DATE 19/06/72 PAGE 22

2. Runtime errors

COMPILER 1 2 3 4 5 6 7 8 9 10 11 12 13 (:0MPILER
KDF9 R R 0 R R R R R R R R R (1) KDF9
4100 R R R R R (2) R 0 R 0 R (2) (3) 4100
GE625 R R R R R R R 0 R R 0 R (3) GE625
ALGOL U R R R R R R R 0<4)R(4)0(4)(9) R (1) ALGOL W
1900 R R 0 R R R R<5} R X X X X 1900
1108 R R R 0 R R R (6) R R 0 n (1) 1108
360/65 0 R R R R R 0 R R R R (1) 360/65
ATLAS R R R R R R R 0 R 0 R R (1) ATLAS
9300 R R R R R R R 0 T(7) R R R (7) 9300
7094 R C R n R R R R R R 0 R (1) 7094
GIER4 R 0 R R R 0 R 0 R 0 R R (3) GIER4
BABEL R R R R R R R (6) R (8) (9) R (1) BABEL
EGDON R R 0 0 R R R 0 R R R R (1) EGDON
4/50 0 0 0 R R R R 0 R R R R (3) 4/50
ALGCL68R R R R R R R R R R X (9) R (DALG0L68R
X8 THE R R R 0 0 0 0 0 R 0 0 0 (3) X3 THE

(1) KDF9, ALGOL W» 1108, 360/65, ATLAS, 7094, BABEL, EGDON,
ALG0L68R.
Program 2.13 fails time limit.

(2) 4100.
In program 2.6 the result is the largest possible negative
number. Program 2.12 went into a runtime loop printing FPOFLO.

(3) 4100, GE625, GIER4, 4/50, X8 THE.
Program 2.13 continues until it is terminated by the operator.

(4) ALGOL W.
The postmortem dump indicates that no value has been assigned
in program 2.8. The declaration in program 2.9 is legal but
attempting to access an element fails. Program 2.10 is ler^aL
(per request of 0. E. Knuth).

(5) 1900.
Program 2.8 fails overflow and the postmortem dump indicates
that no value has been assigned.

(6) 1103, BABEL.
All variables are intialized to zero in these versions of
ALGOL.

(7) 9300.
An error is found during translation in program 2.9 because
the array has fixed bounds. Program 2.13 compiled, ran and
terminated after about one minute without operator
intervention.

(3) BABEL.
Program 2.10 fails during translation
exponentiate operator is defined only

because the real
for 'real = reaI f

ütBUbülNü DATE 19/06/72 PAGE 23

integer".

(9) ALGOL W, BABEL, ALG0L68R.
Program 2.11 fails to translate in this version
because real t real is not defined in the language.

of ALGOL

3. Uarning messages

COMPILER 1 2
KDF9 W T
4100 0 0
GE625 0 ü
ALGOL W T(2) T
1900 W 0
1108
360/65
ATLAS
9300
7094
GIER4

O
U

O
W
0

T
T

(4) 0
T
T
0

3
0
0
0
0

0
0
0
0
0

4
0
O
0
T

0 (3)
0 0

0
0
0
0
0

BABEL T(6)T(6)T(6)T(6)
EGDON O T O 0
4/50 T 0 O O
ALG0L68R NA T T T
X8 THE W T 0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6
W
0
0
0
0
0
0
0
0

7
R
R
(1)
R
0
0
R
0
0

0 (5)
0 0

8 COMPILER
0 KDF9
0 4100
0 GE625
0 ALGOL W
0 1900

1108
360/65
ATLAS

0 R(6)0(6)
0 R 0
0 R 0
0 R
0 0

9300
7094
GIER4
BABEL
EGDON
4/50

T ALGOL68R
0 X8 THE

The compiler eventually reported 'system malfunction" for

Program 3.7.

(2) ALGOL W. , „ . .
The compiler detects the error in program 3.1 because only an
identifier is allowed as an end comment.

(3) 1900. ...
The constant "3.14" is converted to "3" during translation in

Program 3.4.

3.1 with the end
(4) ATLAS.

The compiler lists the text of program
comment on the same line as end . An inadvertent error will

thus be easier to spot.

(5) 7094.
If a switch overflow occurs (as in program 3.7),

either stops or runs wild.

the program

(6) BABEL. ,
Programs 3.1 to 3.4, 3.7 are illegal. End comments no longer
exist; instead an end-of-line comment has been introduced,
i.e. C <LIST OF BASIC SYMB0LS> NEWLINE-SYMBOL is equivalent to
NEWLINE-SYMEOL. Each Babel program must finish with an
end-of-pronram symbol. Assignment to value paramenters is not

THE ALGOL COMPILER TESTS

DEBUGGING DATE 19/06/72 PAGE 24

permitted. Type conversion operators must be specified
explicitly. The concept bf switches has been replaced by
Cases; a case-index overflow is defined as an error.

Each relation is preceded by a symbol which specifies
type of the operands. thus the real relation in nrociram 3
clearly indicated.

which specifies the
on in program 3.8 is

4. Other tests

COMPILER 1 2 3 4 5 6 COMPILER

KDF9 T T OK OK T OK KDF9
4100 0 0 T OK T OK 4100
GE625 (1) 0 T OK T OK GE625

ALGOL W (3) T OK OK (5) T(2) ALGOL W

1900 (3) T OK X X X 1900

1108 T 0 OK OK O T(12) 1108

360/65 W T OK OK (4) W(6) 360/65

ATLAS 0 T OK OK T OK ATLAS

9300 T T OK OK O 0(7) 9300

7094 0 O OK OK O OK 7C94
GIER4 T T(8) OK OK (4) T<3) GIER4
BABEL (3) (9) OK OK (5) OK BAEEL
EGDOfl T O OK OK T OK EGDON
4/50 T T OK OK T(10> OK 4/50
ALG0L68R (3) NA OK NAC11) (5) X ALG0L68R
X8 THE T T OK T 0 OK X8 THE

(1) GE625.
Program 4.1 is inapplicable because array bounds must be
constant in this version of ALGOL.

(2) ALGOL W.
Spaces are illegal within identifiers and constants.

(3) ALGOL W, 1900i BABEL» ALGOL 68R.
Program 4.1 is legal in these versions of ALGOL.

(4) 360/65, GIER4.
own is not implemented in those versions of ALGOL.

(5) ALGOL W, BABEL, ALGOL68R.
own is not a concept in these versions of ALGOL.

(6) 360/65.
For program 4.6, the compiler prints a warning message that
the precision of the real constant beginning 3.1415926535
exceeds , the internally handled precision and has been
truncated.

(7) 9300.
The compiler makes no comment, but the value assigned to
is incorrect (= -6 * 10 t -17).

Pi

THE ALGOL COMPILER TESTS

(8) GIER4.
The error in program 4.2 is not detected in the GIER3 ALGOL
compiler. In program 4.6 the constant is too long.

(9) BABEL.
Progam 4.2 is legal in Babel; the vf -then statement has been
replaced by a WHEN-DO statement. This change ensures that
there are no ambiguities caused by a rule that a statement
appearing in a syntax rule of Babel can always be any sort of
statement.

(10) 4/50.
The compiler fails because own array is not the same as own
real array . Dynamic own arrays are not implemented.

(11) ALGOL 68R.
Comments are always bracketed and may appear anywhere in ALGOL
68» so there is no need for a special end comment or parameter
comment.

(12) 1108.
Spaces are illegal inside identifiers» and only 18 digits are
allowed for a constant.

THE ALGOL COMPILER TESTS

DEBUGGING DATE 19/06/72 FACE 26

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS

It does not seam very sensible to consider debugging faciLi ties without
knowing what errors are actually made by programmers. Accordingly» two of the
KDF9 ALGOL 60 compilers used at NPL were modified (*1) to record details of
the errors which were made. (*2)

There are two different ALGOL 60 compilers in use at NPL. One, known as
WAlgoli is load-and-go with rapid compilation and interpretive execution; the
other» known as KAlgol» compiles slowly but gives efficient code and is used
for working programs. Two operating systems are usud at NPL - Eldon provides
interactive file editing and remote job entry facilities» and "Red box' is the
standard batch operating system used for all jobs which cannot be run under
Eldon.

The programs surveyed at NPL are generally under development and cover a
wide range of mathematical» scientific and engineering applications. Most
users are familiar with ALGOL 60 because it has been the most commonly used
language at NPL for the past seven years; however they ate primarily
scientists» not expert programmers.

Runtime errors

The Eldon WAlgcl controller was modified so that it counted in a file the
total number of programs which fail for each different error. This compiler is
dsed when an ALGOL program is compiled and run from a teletype. There is a
time limit of 30 seconds and the output must not exceed 4320 characters.

The
No. of

results of surveying 8902 programs which
Failures per cent Reason for failure

failed during executiön:-

4516 50.73 time limit
667 7.49 subscript overflow
544 6.11 call read at end of data
486 5.46 variable used before assignment
478 5.37 real overflow on /
397 4.46 array variable used before assignment
242 2.72 error in code body
223 2.51 actual - formal incompatibility
191 2.15 scjrt(x). x < 0
188 2.11 program needs too much space
182 2.04 read
147 1.65 real overflow not / or t
145 1.63 errors in stream number
109 1.22 error using t
95 1.07 dynamic type check

L. Hillman and C. Knightley for making the
, Allin and M. J. Parsons for writing programs to

(1) I am grateful to A.
alterations, and to D.
summarize the results.
(2) L. B. Smith (see Smith» 1967) conducted a similar survey in 1966 to
discover the errors that were made by students in six examples given on
a programming course.

Ciio-./pv nc THF FRPORS MADE RY PPnCPAMMPRS

DEBUGGING DATE 19/06/72 PAGE 27

72 0.81 integer overflow not f
70 0.79 lower bound > upper bound
66 0.74 ln(x). x < 0
35 0.39 write text
24 0.27 exp(x). x > 87
9 0.10 copy text
9 0.10 out of range switch
3 0.03 16 invalid basic symbols output
3 0.03 output a real number
1 0.01 read array

Notes on the runtime errors

The figures in the above table clearly depend on the compiler as much as
the programs and programmers. Some errors are not detected (e.g. underflow);
others are treated as merely worth a warning message (e.g. printing a number
too big to fit into the specified format).

1. Time limit (51%)

This value is targe because WAlgol is so slow that most programmers make no
attempt to avoid it. They know that they must eventually run offline or use
the KAlgol compiler to achieve faster execution.

2, Subscript overflow (7.52Q

TM§ Is & üöiBMön failure. It 1§ also a dangerous failure blouse an
assignment to ah illegal array el «Went will overwrite Some other variable, or.
even worse, overwrite the code of the program. It is a time consuming eher.,.
but there are various possibilities for reducing the inefficiency:-

(1) Do not chock each subscript, but check only that the address
of the subscripted variable lies somewhere m the array.
Compilers which have detected an error in only one of the
programs 2.2 and 2.3 presumably use this technique.

(2) Check array subscripts only on assignment; at least the
completely disastrous effects of overwriting code are avoided

(*1).

(3) Make the check a compiler option. This is dangerous because
most programs thought to be correct still contain errors.

(4) The first three measures are palliatives; there are two
better solutions. The first is to have special hardware to
check subscripts built into the computer so that there is an

interrupt whenever the check fails.

(5) A second possibility " is to define and implement better
programming languages which enable operations to be performed
on complete and partial arrays. Subscript checks can then be
replaced by less frequent checks that the arrays are

(1) A compiler for the ELX8 does this

A SURVEY OF THE ERRORS MADE-BY-PROGRAMMERS

DEBUGGING DATE 19/06/72 PAGE 28

compatible. APL» ALGOL 68 and PL/I are examples of languages
which contain some of the required features. Note that such
languages should also make it easier to avoid making the
error. ' ■■' -

3. Call read at the end of the data (6%)

This error is sometimes merely the result of poor programming. The
frequency as an error may thus be exaggerated.

4. Overflow (9%)

Half of all the overflow errors occur because the programmer has divided by
zero.

5. Using a variable before assignment (10%)

This common error is checked by very few compilers. Like subscript
checking! it is expensive to check and most easily done by special hardware;
failing this» it is probably best to make the check optional. Three new
instructions would be necessary:-

(1) Store a special (= unassigned) value in a specified number of
words.

(2) Cause an interrupt if any word with the unassigned value is
accessed.

(3) Test if a given word has the unassigned value; this
instruction is necessary in post mortem routines.

As with subscript overflow» there is an alternative solution of avoiding
the error by redesigning the language» for example» every variable is assigned
a value at its declaration. But there are disadvantages: block entry would be
a very slow operation when large arrays are declared and it would still be
rather difficult to trace the error when it occurs. Nevertheless« it is a good
feature in FORTRAN and ALGOL 68 that it is possible to assign an initial value
to a variable at its declaration. Good programming practice of using this
option would reduce the frequency of the error.

6. Dynamic variable checks (3.5%)

Ideally it should be possible to check during translation that variables
are always used in a manner consistent with their declaration; however it is
difficult to make a complete check in ALGOL 60. Programs 1.4 to 1.10. 1.13»
1.14 test whether such errors are found during translation. Most ALGOL
compilers» including WAlgol» are unsuccessful and need to make runtime checks.
The successful compilers often compile only a subset of ALGOL 60.

The solution with this problem is definitely better language design; ALGOL
W» ALGOL 68 and Babel compilers all check during translation that each use of
an identifier is fully consistent with its declaration.

UC.OUUU4.0IU UM IC 17/UO/fC KHuC t7

7. Errors while reading a number (2%)

WAlgol reads free-format data and is rather tolerant of incorrect data. A
failure is detected if there is a syntax error in the data (e.g. two decimal
points in a number or no digit after a decimal point) or if the number is too
large. Other possible errors (e.g. too many digits» a silly value» reading out
of step) must be checked by the programmer.

8. Output errors (.6%)

Output errors are rare because Walgol .is very tolerant. When a value does
not fit the specified format, it is printed with a default format. The layout
of the results is spoiled but the results are those calculated: this is more
sensible than preserving the layout by deleting leading digits. Similarly.
when outputting symbols» a program fails only after the program has tried to
output 16 non-existent symbols.

9. Errors in stream or channel numbers (1.3%)

These errors arise when the programmer:- (1) forgets to open a stream
before using it. (2) closes it before the end of his program, (3) outputs to
an input device or vice versa. A different form of Input Output Scheme can be
used which removes the possibility of making most of these errors. In this
scheme all input and output goes to whichever suitable streams are currently
specified in the program. Each program starts with one standard input and
output device and for most programs this is sufficient for the whole program.
A scheme like this has proved very convenient in Babel.

10. Errors in code bodies (3%)

It is not possible to deduce very much from the number of errors found in
code bodies. WAlgol checks that the the stacks are not grossly incorrect at
the end of a code procedure. A failure also occurs if the program executes an
illegal instruction Or jumps to an non-existent address. As with all mächine
code» it is easier to make mistakes than detect them.

11. Errors when calling a standard function (3%)

'sqrt' fails more frequently than 'In' because it is called more often (see
Wichmann, 1970).

12. Errors with dynamic array bounds (3%)

These errors occur when the upper bound of an array is so large that the
array will not fit into the available space, or when an upper bound is less
than the lower bound. The error 'program needs too much space" rarely occurs
because a program is too complex (recursive) and has filled the stack.

These errors would not occur if the space required for program and arrays
is found during translation (as in FORTRAN). I suspect the error often occurs
in WAlgol because the bounds for the arrays have been read from incorrect
data.

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS

DEBUGGING DATE 19/06/72 .. PAGE 30

13. Switch index overflow (0.1%)

I am surprised how infrequently this error occurs; I assume that it is
because most users do not understand and use switches. Perhaps WhenJ an error
does' occur# it is easily cured once and for all.

Translation errors

The 'red-box WAlgol' translator has been modified to record the translation
failures. This is the batch compiler used for testing those programs which,
for one reason or another, cannot be tested online in the Eldon system. For
instance, they may be too big, or ^segmented» or use the graph plotter. Many of
the errors are difficult to interpret and explain; they are probably >caused by
misprints.

For each program that fai Is to translate, the identifier and first four
error messages are remembered. A program has been written to print the list of
errors and to count the number of times each failure number occurs:-i (1) as a
first error, (2) as a subsequent error. Each entry in the table below
specifies a translation failure, the number of programs in which it was the
first failure reported, and the number of times it was reported as a second,
third or fourth failure in a program.

The table gives only the most common errors. All other errors were reported
as a first error in less than 18 programs.

Total number of programs that failed = 1383

FIRST SUBSEQUENT CAUSE OF ERROR
561 - Identifier used but not declared or

program is too large
Wrong number of subscripts or parameters
Redeclaration of identifier
No end-of-program symbol after program
End-of-program symbol inside program
Adjacent delimiters inadmissible
Current use of identifier is inconsistent
with previous uses

41 20 Letter, digit, decimal point or subscript ten
misplaced

32 7 Identifier in value-part or specification-part
but not in formal-parameter-list, or vice versa

Illegal statement
Statement.ends incorrectly
Declaration follows statement

Notes on the translation errors

The survey of translation errors has not been so successful because several

92 84
59 31
54 31
45 34
43 37
42 87

29 79
24 12
23 82

DEBUGGING DATE 19/06/7* PAüt i

factors have added to"the difficulty of analysing the figures:-

(1) Some of the errors are spurious, i.e. an earlier error -has
upset the compiler so that it reports one or more errors which
.do not actually exist. It is possible to recognize the errors
which are probably spurious because they have a much higher

frequency of being a subsequent error than a first error. For
WAlgol I estimate that about a quarter of subsequent errors

are spurious.

(2) The failure message usually says what the compiler found
wrong, not the mistake made by the programmer. For instance. I
suspect that the following errors are all very common.-
deleting or inserting a character, transposing two characters,
not underlining a basic symbol, confusion between I. l^nj.
confusion between 0 (a letter) and 0 (a digit), typ ng a
character in the wrong shift, missing out an operator, faiing
to match brackets/Although one of these errors usually causes
a syntax error, the failure message does not give the error in

this form.

(3) The two commonest errors with this compi ler are "identifier
used but not declared* and "program too large ; however, both
errors have been remembered in the same way in the table.

1. Identifier used but not declared

This is by far the most common ALGOL 60 error. In WAlgol it is only
detected if no other errors have been detected in the program.

In many programming languages (e.g. FORTRAN)>} variables do not have to be
declared explicitly. In this case the error can be found easily only IT

compiler prints a warning message.

2. Program is too large

The survey found this to be a common error only because the version of the
compiler which was surveyed is mainly used for very large programs.

3. Inconsistent use of identifiers

WAlaol tries to check that identifiers are used consistently with their
declaration; however, the checks are not complete and as a result some errors
are not detected until execution.

4. Begin - end structure

Errors in the begin - end structure of a program show up in a variety of
uavs- an error in a procedure body will appear as 'declaration follows
Ws a erne", an extra begin (or opening string quote) as end-o -program symbol
inside program, an extra end as "no end-of-program symbol after program .

5. The number of translation errors found at a time

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS

DEBUGGING DATE 19/06/72 PAGE 32

WAlgol is quite successful at finding all the syntax errors, in a program;
therefore the number of errors reported will be approximately the same as the
number of syntax errors in the program.

Programs Number and sort of errors
40% One or more identifiers used but not declared

or program is too large
30% One syntax error
12% Two syntax errors '
5% Three syntax errors

13% Four or more syntax errors

DEBUGGING DATE 19/06/72 PAGE 33

CONCLUSION

Good debugging facilities do not arise by chance, but through the foresight of
the software engineer when he was designing the compiler.

This paper has outlined some compiler properties and available tools which
aid debugging, and shown that some compilers are vastly superior to others.
Debugging is important because incorrect programs are expensive.

Not enough attention has been paid to the problems of ensuring that a
program does what was originally intended. As a result some languages are far
better than others at guiding the programmer to produce correct programs. A
good language for debugging contains redundancy so that a random misprint
almost always results in a syntactically incorrect program; a good language
also has a natural compact notation.

Compilers also differ greatly, even for the same language. A compiler makes
debugging easy if it is small and fast, produces code which is at least
reasonably efficient, has a very rapid turnround, and gives concise clear-
error messages. A compiler should also provide extra documentation and

diagnostic aids.

CONCLUSION

DEBUGGING DATE 19/06/72 PAGE 34

ACKNOWLEDGEMENTS

I am grateful to colleagues at NPL who helped this survey in various ways
including discussions» amending compilers» writing and running various
programs» typing results» etc; among them are D. Allin« Miss L. Ellis» A. L.
Hillman» C. Knightley. M. J. Parsons» Miss. H. Pinkham» Miss R. Thornand Dr.
B. A. Wichmänn.

I am also grateful to all those people (see page 19) who took
to run the test programs and let me have the results.

Finally I would also like to thank I. D. Hill for suggesting
test programs.

the trouble

some of the

Ari/Mni.n cnccHCMTc

DEBUGGING DATE 19/06/72 ' PAGE 35

REFERENCES

figure 17 - Computer output canlhave many variations and can
keep students occupied for hours»
SIGPLAN Notices 4. 11<Nov 1969)J 20.

j. M. Adams, J. B. Johnston. R. H. Start. (Editors)»
Proceedings of an ACM Conferenceion Proving assertions about

programs'.
SIGPLAN Notices. 7, KJan 1972).

H. Bauer» S. Becker» S. Graham» |
ALGOL W Implementation» j .Ä ««, u „«/o
Stanford University Computer Science Report. CS 98, May 1968.

H. Bauer. S. Becker, S.L. Graham» E. Satterthwaite. R.L. Sites.

ALGOL W Language definition. ■''-M -„A . i «71
Stanford University Computer Science Report CS 230. July 1971.

■ ■■■'.! ' ■■■■"'

R. Bayer. D. Gries. M. Paul. H. R. Wiehle»
The ALGOL Illinois 7090/7094 Post I Mortem Dump.
Comm ACM. 10(Dec 1967). 804 -808^

P. J. Brown. :
ML/I User's manual. I . .,
University Mathematical Laboratory'. Cambridge, England, July

1966. ■'.-'; ■ I' ''■' ' ;'■■ .'.'-■-'
■ - ■ ■■■■■■.. : ■'■ I

■'.'.',■ ' ■■

p. J. Brown, ! „,»,-,x ^-o AT*
The ML/I Macro processor, Comm ACMi 10(0ct 1967)» 618 - 623.

- ■/ ■ • '■" : "-'.'■■; ' I :; ;.■: "; ■■ ■ :■ " ', ,
K. Conrow» R. G. Smith»

NEATER 2» A PL/I Source Statement Reformatter»
Comm ACM» 13(Nov 1970). 669 - 674. j

ECMA»
ECMA subset of ALGOL 60. i
Comm ACM, 6.10(Oct 1963). 595-597.i

B. Elspas, M. U. Green. K. N. Levitt. ; ' V_ . ,0_. „■,_
Software reliability. Computer (IEEE). Jan-Feb 1971, 21-..7.

D. G. Evershed, G. E. Rippon» i . ..
Highlevel languages for lowIeve I users, Comp. J, 14, 1 u-eD

1971)» 87 - 90. i

G. E. Forsythe» . . ' „„„u
Pitfalls in computation, or why a math book in t enjugh.
Stanford University Computer Science Report. CS 147. Jan ivru.

F. Gruenberger. _ ! |
Problems and priorities» ;

DEBUGGING DATE 19/06/72 PAGE 36

Datamation. Vol 18. 3<Mar 1972), 47 - 50.

IFIP,
Report on SUBSET ALGOL 60(IFIP),
Comm ACM, 7, 10(0ct 1964), 626 - 628.

R.L. London. ■ ■ ■
Proving programs correct - some techniques and examples.
BIT, 10, 2(1970) 168 - 182.

P. G. Moulton, M. F. Müller»
DITRAN - A compiler emphasizing diagnostics, Comm ACM, 10,
KJan 1967), 45-52.

B. Randell and L. J. Russell,
'ALGOL 60 Implementation*,
Academic Press, 1964.

E. Satterthwaite,
Debugging tools for high-level languages.
Computing Laboratory Technical Report 29, Newcastle-upon-Tyne
University, Dec 1971.

R. S. Scowen.
Babel, a new programming language, NPL CCU Report No 7, Oct
1969.

R. S. Scowen, D. Allin. A. L. Hillman, M. Shimell,
SOAP - A program which documents and edits ALGOL 60 programs,
Comp J, pp133 - 135, Vol 14, No 2, 1971.

P.W. Shantz, R.A. German, J.G. Mitchell, R.S.K. Shirley, C.R.
Zarnke»
WATFOR - The University of Waterloo FORTRAN IV compiler,
Comm ACM, 10, KJan 1967), 41 - 44.

L. 8. Smith,
Part one: A comparison of batch processing and instant
turnround. Part two: A survey of most frequent syntax and
execution time errors, Stanford Computation Center, Feb 1967.

E. C. Van Horn,
Three criteria for designing computing systems to facilitate
debugging,
Comm ACM 11, 5<May 1968), 360 - 365.

N. Wirth, C. A. R. Hoare,
A contribution to the development of ALGOL, Comm ACM, pp413 -
432, Vol 9, No 6, 1966.

REFERENCES

